/* This is wrapper class...
 Objective would be to push more functionality into this Class to enforce consistent definition
 */
public abstract class Generics {
	public final String masterType = "Generic";
	private String type;	// extender should define their data type

	// generic enumerated interface
	public interface KeyTypes {
		String name();
	}
	protected abstract KeyTypes getKey();  	// this method helps force usage of KeyTypes

	// getter
	public String getMasterType() {
		return masterType;
	}

	// getter
	public String getType() {
		return type;
	}

	// setter
	public void setType(String type) {
		this.type = type;
	}
	
	// this method is used to establish key order
	public abstract String toString();

	// static print method used by extended classes
	public static void print(Generics[] objs) {
		// print 'Object' properties
		System.out.println(objs.getClass() + " " + objs.length);

		// print 'Generics' properties
		if (objs.length > 0) {
			Generics obj = objs[0];	// Look at properties of 1st element
			System.out.println(
					obj.getMasterType() + ": " + 
					obj.getType() +
					" listed by " +
					obj.getKey());
		}

		// print "Generics: Objects'
		for(Object o : objs)	// observe that type is Opaque
			System.out.println(o);

		System.out.println();
	}
}
public class Alphabet extends Generics {
	// Class data
	public static KeyTypes key = KeyType.title;  // static initializer
	public static void setOrder(KeyTypes key) {Alphabet.key = key;}
	public enum KeyType implements KeyTypes {title, letter}
	private static final int size = 26;  // constant used in data initialization

	// Instance data
	private final char letter;
	
	/*
	 * single letter object
	 */
	public Alphabet(char letter)
	{
		this.setType("Alphabet");
		this.letter = letter;
	}

	/* 'Generics' requires getKey to help enforce KeyTypes usage */
	@Override
	protected KeyTypes getKey() { return Alphabet.key; }

	/* 'Generics' requires toString override
	 * toString provides data based off of Static Key setting
	 */
	@Override
	public String toString()
	{
		String output="";
		if (KeyType.letter.equals(this.getKey())) {
			output += this.letter;
		} else {
			output += super.getType() + ": " + this.letter;
		}
		return output;
	}

	// Test data initializer for upper case Alphabet
	public static Alphabet[] alphabetData()
	{
		Alphabet[] alphabet = new Alphabet[Alphabet.size];
		for (int i = 0; i < Alphabet.size; i++)
		{
			alphabet[i] = new Alphabet( (char)('A' + i) );
		} 	
		return alphabet;
	}
	
	/* 
	 * main to test Animal class
	 */
	public static void main(String[] args)
	{
		// Inheritance Hierarchy
		Alphabet[] objs = alphabetData();

		// print with title
		Alphabet.setOrder(KeyType.title);
		Alphabet.print(objs);

		// print letter only
		Alphabet.setOrder(KeyType.letter);
		Alphabet.print(objs);
	}
	
}
Alphabet.main(null);
class [LREPL.$JShell$15$Alphabet; 26
Generic: Alphabet listed by title
Alphabet: A
Alphabet: B
Alphabet: C
Alphabet: D
Alphabet: E
Alphabet: F
Alphabet: G
Alphabet: H
Alphabet: I
Alphabet: J
Alphabet: K
Alphabet: L
Alphabet: M
Alphabet: N
Alphabet: O
Alphabet: P
Alphabet: Q
Alphabet: R
Alphabet: S
Alphabet: T
Alphabet: U
Alphabet: V
Alphabet: W
Alphabet: X
Alphabet: Y
Alphabet: Z

class [LREPL.$JShell$15$Alphabet; 26
Generic: Alphabet listed by letter
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

/*
 * Animal class extends Generics and defines abstract methods
 */
public class Animal extends Generics {
	// Class data
	public static KeyTypes key = KeyType.title;  // static initializer
	public static void setOrder(KeyTypes key) { Animal.key = key; }
	public enum KeyType implements KeyTypes {title, name, age, color}

	// Instance data
	private final String name;
	private final int age;
	private final String color;

	/* constructor
	 *
	 */
	public Animal(String name, int age, String color)
	{
		super.setType("Animal");
		this.name = name;
		this.age = age;
		this.color = color;
	}

	/* 'Generics' requires getKey to help enforce KeyTypes usage */
	@Override
	protected KeyTypes getKey() { return Animal.key; }
	
	/* 'Generics' requires toString override
	 * toString provides data based off of Static Key setting
	 */
	@Override
	public String toString()
	{
		String output="";
		if (KeyType.name.equals(this.getKey())) {
			output += this.name;
		} else if (KeyType.age.equals(this.getKey())) {
			output += "00" + this.age;
			output = output.substring(output.length() - 2);
		} else if (KeyType.color.equals(this.getKey())) {
			output += this.color;
		} else {
			output += super.getType() + ": " + this.name + ", " + this.color + ", " + this.age;
		}
		return output;
		
	}

	// Test data initializer
	public static Animal[] animals() {
		return new Animal[]{
				new Animal("Lion", 8, "Gold"),
				new Animal("Pig", 3, "Pink"),
				new Animal("Robin", 7, "Red"),
				new Animal("Cat", 10, "Black"),
				new Animal("Kitty", 1, "Calico"),
				new Animal("Dog", 14, "Brown")
		};
	}
	
	/* main to test Animal class
	 * 
	 */
	public static void main(String[] args)
	{
		// Inheritance Hierarchy
		Animal[] objs = animals();

		// print with title
		Animal.setOrder(KeyType.title);
		Animal.print(objs);

		// print name only
		Animal.setOrder(KeyType.name);
		Animal.print(objs);
	}

}
Animal.main(null);
class [LREPL.$JShell$17$Animal; 6
Generic: Animal listed by title
Animal: Lion, Gold, 8
Animal: Pig, Pink, 3
Animal: Robin, Red, 7
Animal: Cat, Black, 10
Animal: Kitty, Calico, 1
Animal: Dog, Brown, 14

class [LREPL.$JShell$17$Animal; 6
Generic: Animal listed by name
Lion
Pig
Robin
Cat
Kitty
Dog

public class Cupcake extends Generics {
	// Class data
	public static KeyTypes key = KeyType.title;  // static initializer
	public static void setOrder(KeyTypes key) {Cupcake.key = key;}
	public enum KeyType implements KeyTypes {title, flavor, frosting, sprinkles}

	// Instance data
	private final String frosting;
	private final int sprinkles;
	private final String flavor;

	// Constructor
	Cupcake(String frosting, int sprinkles, String flavor)
	{
		this.setType("Cupcake");
		this.frosting = frosting;
		this.sprinkles = sprinkles;
		this.flavor = flavor;
	}

	/* 'Generics' requires getKey to help enforce KeyTypes usage */
	@Override
	protected KeyTypes getKey() { return Cupcake.key; }

	/* 'Generics' requires toString override
	 * toString provides data based off of Static Key setting
	 */
	@Override
	public String toString() {		
		String output="";
		if (KeyType.flavor.equals(this.getKey())) {
			output += this.flavor;
		} else if (KeyType.frosting.equals(this.getKey())) {
			output += this.frosting;
		} else if (KeyType.sprinkles.equals(this.getKey())) {
			output += "00" + this.sprinkles;
			output = output.substring(output.length() - 2);
		} else {
			output = super.getType() + ": " + this.flavor + ", " + this.frosting + ", " + this.sprinkles;
		}
		return output;
	}

	// Test data initializer
	public static Cupcake[] cupcakes() {
		return new Cupcake[]{
				new Cupcake("Red", 4, "Red Velvet"),
			    new Cupcake("Orange", 5, "Orange"),
			    new Cupcake("Yellow", 6, "Lemon"),
			    new Cupcake("Green", 7, "Apple"),
			    new Cupcake("Blue", 8, "Blueberry"),
			    new Cupcake("Purple", 9, "Blackberry"),
			    new Cupcake("Pink", 10, "Strawberry"),
			    new Cupcake("Tan", 11, "Vanilla"),
			    new Cupcake("Brown", 12, "Chocolate"),
		};
	}
	
	public static void main(String[] args)
	{
		// Inheritance Hierarchy
		Cupcake[] objs = cupcakes();

		// print with title
		Cupcake.setOrder(KeyType.title);
		Cupcake.print(objs);

		// print flavor only
		Cupcake.setOrder(KeyType.flavor);
		Cupcake.print(objs);
	}
	
}
Cupcake.main(null);
class [LREPL.$JShell$19$Cupcake; 9
Generic: Cupcake listed by title
Cupcake: Red Velvet, Red, 4
Cupcake: Orange, Orange, 5
Cupcake: Lemon, Yellow, 6
Cupcake: Apple, Green, 7
Cupcake: Blueberry, Blue, 8
Cupcake: Blackberry, Purple, 9
Cupcake: Strawberry, Pink, 10
Cupcake: Vanilla, Tan, 11
Cupcake: Chocolate, Brown, 12

class [LREPL.$JShell$19$Cupcake; 9
Generic: Cupcake listed by flavor
Red Velvet
Orange
Lemon
Apple
Blueberry
Blackberry
Strawberry
Vanilla
Chocolate

/**
 *  Implementation of a Double Linked List;  forward and backward links point to adjacent Nodes.
 *
 */

 public class LinkedList<T>
 {
     private T data;
     private LinkedList<T> prevNode, nextNode;
 
     /**
      *  Constructs a new element
      *
      * @param  data, data of object
      * @param  node, previous node
      */
     public LinkedList(T data, LinkedList<T> node)
     {
         this.setData(data);
         this.setPrevNode(node);
         this.setNextNode(null);
     }
 
     /**
      *  Clone an object,
      *
      * @param  node  object to clone
      */
     public LinkedList(LinkedList<T> node)
     {
         this.setData(node.data);
         this.setPrevNode(node.prevNode);
         this.setNextNode(node.nextNode);
     }
 
     /**
      *  Setter for T data in DoubleLinkedNode object
      *
      * @param  data, update data of object
      */
     public void setData(T data)
     {
         this.data = data;
     }
 
     /**
      *  Returns T data for this element
      *
      * @return  data associated with object
      */
     public T getData()
     {
         return this.data;
     }
 
     /**
      *  Setter for prevNode in DoubleLinkedNode object
      *
      * @param node, prevNode to current Object
      */
     public void setPrevNode(LinkedList<T> node)
     {
         this.prevNode = node;
     }
 
     /**
      *  Setter for nextNode in DoubleLinkedNode object
      *
      * @param node, nextNode to current Object
      */
     public void setNextNode(LinkedList<T> node)
     {
         this.nextNode = node;
     }
 
 
     /**
      *  Returns reference to previous object in list
      *
      * @return  the previous object in the list
      */
     public LinkedList<T> getPrevious()
     {
         return this.prevNode;
     }
 
     /**
      *  Returns reference to next object in list
      *
      * @return  the next object in the list
      */
     public LinkedList<T> getNext()
     {
         return this.nextNode;
     }
 
 }
import java.util.Iterator;

/**
 * Queue Iterator
 *
 * 1. "has a" current reference in Queue
 * 2. supports iterable required methods for next that returns a generic T Object
 */
class QueueIterator<T> implements Iterator<T> {
    LinkedList<T> current;  // current element in iteration

    // QueueIterator is pointed to the head of the list for iteration
    public QueueIterator(LinkedList<T> head) {
        current = head;
    }

    // hasNext informs if next element exists
    public boolean hasNext() {
        return current != null;
    }

    // next returns data object and advances to next position in queue
    public T next() {
        T data = current.getData();
        current = current.getNext();
        return data;
    }
}

/**
 * Queue: custom implementation
 * @author     John Mortensen
 *
 * 1. Uses custom LinkedList of Generic type T
 * 2. Implements Iterable
 * 3. "has a" LinkedList for head and tail
 */
public class Queue<T> implements Iterable<T> {
    LinkedList<T> head = null, tail = null;

    /**
     *  Add a new object at the end of the Queue,
     *
     * @param  data,  is the data to be inserted in the Queue.
     */
    public void add(T data) {
        // add new object to end of Queue
        LinkedList<T> tail = new LinkedList<>(data, null);

        if (this.head == null)  // initial condition
            this.head = this.tail = tail;
        else {  // nodes in queue
            this.tail.setNextNode(tail); // current tail points to new tail
            this.tail = tail;  // update tail
        }
    }

    /**
     *  Returns the data of head.
     *
     * @return  data, the dequeued data
     */
    public T delete() {
        T data = this.peek();
        if (this.tail != null) { // initial condition
            this.head = this.head.getNext(); // current tail points to new tail
            if (this.head != null) {
                this.head.setPrevNode(tail);
            }
        }
        return data;
    }

    /**
     *  Returns the data of head.
     *
     * @return  this.head.getData(), the head data in Queue.
     */
    public T peek() {
        return this.head.getData();
    }

    /**
     *  Returns the head object.
     *
     * @return  this.head, the head object in Queue.
     */
    public LinkedList<T> getHead() {
        return this.head;
    }

    /**
     *  Returns the tail object.
     *
     * @return  this.tail, the last object in Queue
     */
    public LinkedList<T> getTail() {
        return this.tail;
    }

    /**
     *  Returns the iterator object.
     *
     * @return  this, instance of object
     */
    public Iterator<T> iterator() {
        return new QueueIterator<>(this.head);
    }
}
/**
 * Queue Manager
 * 1. "has a" Queue
 * 2. support management of Queue tasks (aka: titling, adding a list, printing)
 */
class QueueManager<T> {
    // queue data
    private final String name; // name of queue
    private int count = 0; // number of objects in queue
    public final Queue<T> queue = new Queue<>(); // queue object

    /**
     *  Queue constructor
     *  Title with empty queue
     */
    public QueueManager(String name) {
        this.name = name;
    }

    /**
     *  Queue constructor
     *  Title with series of Arrays of Objects
     */
    public QueueManager(String name, T[]... seriesOfObjects) {
        this.name = name;
        this.addList(seriesOfObjects);
    }

    /**
     * Add a list of objects to queue
     */
    public void addList(T[]... seriesOfObjects) {  //accepts multiple generic T lists
        for (T[] objects: seriesOfObjects)
            for (T data : objects) {
                this.queue.add(data);
                this.count++;
            }
    }

    /**
     * Print any array objects from queue
     */
    public void printQueue() {
        System.out.println(this.name + " count: " + count);
        System.out.print(this.name + " data: ");
        for (T data : queue)
            System.out.print(data + " ");
        System.out.println();
    }
}
import java.util.Random; 
/**
 * Queue Manager
 * 1. "has a" Queue
 * 2. support management of Queue tasks (aka: titling, adding a list, printing)
 */
class QueueManagerChanged<T> {
    // queue data
    private final String name; // name of queue
    protected int count = 0; // number of objects in queue
    public final Queue<T> queue = new Queue<>(); // queue object
    private String lastOperation = "";
    private String lastObject = "";
    /**
     *  Queue constructor
     *  Title with empty queue
     */
    public QueueManagerChanged(String name) {
        this.name = name;
    }

    public int getCount() {
        return this.count;
    }

    /**
     * Print any array objects from queue
     */
    public void printQueue() {
        System.out.println(lastOperation + ": " + lastObject);
        System.out.print(this.name + " count: " + count);
        System.out.print(", data: ");
        for (T data : queue)
            System.out.print(data + " ");
        System.out.println();
    }

    public void printIntQueue() {
        for (T data : queue)
        System.out.print(data + " ");
        System.out.println();
    }

    /**
     * Add an objects to queue
     */
    public void add(T object) {  //accepts single generic T Object

        this.queue.add(object);
        this.count++;

        this.lastOperation = "Enqueued";
        this.lastObject = object.toString();
    }

    public LinkedList<T> getHead() {
        return this.queue.getHead();
    }

    public T delete() {  //accepts single generic T Object
        T headObject = this.queue.delete();
        this.count--;

        this.lastOperation = "Dequeued";
        this.lastObject = headObject.toString();

        return headObject;
    }

    public T peek() {  //accepts single generic T Object
        return this.queue.peek();
    }

    public LinkedList<T> getNode(int index) {
        LinkedList<T> node = queue.getHead();
        for (int i = 0; i < index; i++) {
            node = node.getNext();
        }
        return node;
    }

    public void shuffle() {

        for(LinkedList<T> node1 = queue.getHead(); node1 != null; node1 = node1.getNext()) {
            Random random = new Random();
            int index = random.nextInt(count);
            
            LinkedList<T> node2 = getNode(index);

            T temp = node1.getData();
            node1.setData(node2.getData());
            node2.setData(temp);
      
            // Swap them
          }
    }
}

Challenge 1

import java.util.*;

public class QueueChangeTester {
    public static void main(String[] args) {
        // Create an array of strings representing FRQs
        Object[] FRQs = new String[] { "2021 Question 1", "2019 Question 2", "2020 Question 3", "2003 Question 4", "2016 Question 3", "2018 Question 2", "2005 Question 1"};
        
        // Create a new QueueManagerChanged object called qFRQs
        QueueManagerChanged qFRQs = new QueueManagerChanged("FRQs");

        // Iterate over the FRQs array and add each element to the qFRQs queue
        for (Object i : FRQs) {
            qFRQs.add(i);
            qFRQs.printQueue(); // Print the current state of the queue
        }

        // Iterate over the FRQs array again and delete each element from the qFRQs queue
        for (Object i : FRQs) {
            qFRQs.delete();
            qFRQs.printQueue(); // Print the current state of the queue
        }
    }
}

QueueChangeTester.main(null);
Enqueued: 2021 Question 1
FRQs count: 1, data: 2021 Question 1 
Enqueued: 2019 Question 2
FRQs count: 2, data: 2021 Question 1 2019 Question 2 
Enqueued: 2020 Question 3
FRQs count: 3, data: 2021 Question 1 2019 Question 2 2020 Question 3 
Enqueued: 2003 Question 4
FRQs count: 4, data: 2021 Question 1 2019 Question 2 2020 Question 3 2003 Question 4 
Enqueued: 2016 Question 3
FRQs count: 5, data: 2021 Question 1 2019 Question 2 2020 Question 3 2003 Question 4 2016 Question 3 
Enqueued: 2018 Question 2
FRQs count: 6, data: 2021 Question 1 2019 Question 2 2020 Question 3 2003 Question 4 2016 Question 3 2018 Question 2 
Enqueued: 2005 Question 1
FRQs count: 7, data: 2021 Question 1 2019 Question 2 2020 Question 3 2003 Question 4 2016 Question 3 2018 Question 2 2005 Question 1 
Dequeued: 2021 Question 1
FRQs count: 6, data: 2019 Question 2 2020 Question 3 2003 Question 4 2016 Question 3 2018 Question 2 2005 Question 1 
Dequeued: 2019 Question 2
FRQs count: 5, data: 2020 Question 3 2003 Question 4 2016 Question 3 2018 Question 2 2005 Question 1 
Dequeued: 2020 Question 3
FRQs count: 4, data: 2003 Question 4 2016 Question 3 2018 Question 2 2005 Question 1 
Dequeued: 2003 Question 4
FRQs count: 3, data: 2016 Question 3 2018 Question 2 2005 Question 1 
Dequeued: 2016 Question 3
FRQs count: 2, data: 2018 Question 2 2005 Question 1 
Dequeued: 2018 Question 2
FRQs count: 1, data: 2005 Question 1 
Dequeued: 2005 Question 1
FRQs count: 0, data: 

Challenge 2

class QueueCombine {
    public static void main(String[] args) {

        // Create three arrays of integers and three queue objects to hold them
        Object[] ints1 = new Integer[] { 1, 3, 5, 7};
        QueueManagerChanged q1 = new QueueManagerChanged("Queue1");
        Object[] ints2 = new Integer[] { 2, 4, 6, 8};
        QueueManagerChanged q2 = new QueueManagerChanged("Queue2");
        Object[] ints3 = new Integer[] { };
        QueueManagerChanged q3 = new QueueManagerChanged("Queue3");

        // Add the integers in ints1 to q1
        for (Object o : ints1) {
            q1.add(o);
        }

        // Add the integers in ints2 to q2
        for (Object o : ints2) {
            q2.add(o);
        }
        
        // Print the initial state of q1 and q2
        System.out.print("Initial Queue First: "); 
        q1.printIntQueue();
        System.out.print("Initial Queue Second: "); 
        q2.printIntQueue();

        // Combine q1 and q2 into q3
        while (q1.getCount() != 0 || q2.getCount() != 0) {
            // If both q1 and q2 have elements, compare the first elements and add the smaller one to q3
            if (q1.getCount() != 0 && q2.getCount() != 0) {
                int i1 = (Integer) q1.peek();
                int i2 = (Integer) q2.peek();
                    if (i1 <= i2) {
                        q3.add(q1.delete());
                    }
                    else {
                        q3.add(q2.delete());
                    }
            }
            // If only q1 has elements, add the first element to q3
            else if (q1.getCount() != 0) {
                q3.add(q1.delete());
            } 
            // If only q2 has elements, add the first element to q3
            else if (q2.getCount() !=0) {
                q3.add(q2.delete());
            }
            else {
                // Do nothing
            }
        }

        // Print the final state of q3
        System.out.print("Final Queue Third: "); 
        q3.printIntQueue();
    }
}

QueueCombine.main(null);
Initial Queue First: 1 3 5 7 
Initial Queue Second: 2 4 6 8 
Final Queue Third: 1 2 3 4 5 6 7 8 

Challenge 3

public class QueueShuffle {
    public static void main(String[] args) {
        // Create an array of integers
        Object[] integers = new Integer[] { 1, 2, 3, 4, 5};
        // Create a new queue and add the integers to it
        QueueManagerChanged qIntegers = new QueueManagerChanged("Numbers");

        for (Object i : integers) {
            qIntegers.add(i);
        }

        // Print the original queue
        System.out.print("Original Queue:");
        qIntegers.printIntQueue();

        // Shuffle the queue
        qIntegers.shuffle();
        
        // Print the shuffled queue
        System.out.print("Queue After Shuffling:");
        qIntegers.printIntQueue();
    }
}
// Call the main method of the QueueShuffle class
QueueShuffle.main(null);
Original Queue:1 2 3 4 5 
Queue After Shuffling:4 1 2 3 5 

Challenge 4

import java.util.*;

public class ReverseQueue {
    public static void main(String[] args) {
        Object[] integers = new Integer[] { 1, 2, 3, 4, 5};
        QueueManagerChanged qIntegers = new QueueManagerChanged("Numbers");

        
        for (Object o : integers) {
            qIntegers.add(o);
          }
  
        Stack<Object> stack = new Stack<>();

        System.out.println("Stack Initial: " + stack);
        System.out.print("Queue Initial: ");
        qIntegers.printIntQueue();
          
        // Push all elements from queue to stack
        while (qIntegers.getCount() != 0) {
            stack.push(qIntegers.delete());
        }

        System.out.println("Stack Full: " + stack);
        System.out.print("Queue when Stacked: ");
        qIntegers.printIntQueue();

        // Pop all elements from stack and add back to queue
        while (stack.size() != 0) {
            qIntegers.add(stack.pop());
        }

        // Print the reversed queue
        System.out.println("Stack Final: " + stack);
        System.out.print("Queue Final: ");
        qIntegers.printIntQueue();
        }
    }

ReverseQueue.main(null);
Stack Initial: []
Queue Initial: 1 2 3 4 5 
Stack Full: [1, 2, 3, 4, 5]
Queue when Stacked: 
Stack Final: []
Queue Final: 5 4 3 2 1